...
Code Block |
---|
"fusion": { "type": "ImuOpticalFusion", "settings": { "echoFusedPose": false, "echoOpticalPose": true, "runIntercalibration": true, "Autocalibration": { "minAgeS": 60.0, "nSamplesForAutocalibration": 1500, "nSamplesForSteady": 256, "noiseRmsLimit": 0.02, "steadyThresholdAverage": 0.2, "steadyThresholdRms": 1.0 }, "MotionDetection": { "omegaLimit": 2.0, "positionSampleInterval": 1000, "rotationFilterAlpha": 0.9, "timeToUnknown": 500 }, "Prediction": { "filterOrder": 2, "predictionInterval": 0.01 }, "SensorFusion": { "alignment": { "w": 1.0, "x": 0.0, "y": 0.0, "z": 0.0 }, "orientationWeight": 0.005, "tiltCorrection": null, "yawWeight": 0.01 } } } |
...
The optical system is the tracking reference, its pose is what is received by the visualization backend. The orientation of the IMU sensor is calibrated relative to the optical markers on the HMD. Therefore it is important to set up the tracking body or rigid body in the optical tracking software (DTrack, Motive etc.) in a way that its axes align with the optical axes of the head mounted display.
...
We will add to this section soon. In the meantime refer to this page for ART setups and this page for OptiTrack setups from the LPVR documentation.
...