Introduction
FusionHub is a software application that has the purpose of combining various sensor data inputs to create a higher level data output. There are 3 basic versions of FusionHub:
FusionHub BASE combines data from an outside-in tracking system with inertial measurements via an IMU. Typical applications: Head-mounted display tracking for VR/AR applications, camera tracking for virtual production
FusionHub MOVE adds an additional platform IMU to the BASE configuration. It combines data from both IMUs to calculate poses relative to a moving platform. Typical applications: AR/VR in a vehicle, aircraft, or on a simulator platform
FusionHub FLOW combines odometry, GPS and IMU data from a vehicle to calculate high-accuracy and low-latency global localization information. Typical applications: Automobile localization, robot localization
The diagram below shows the general structure of FusionHub. Sources and sinks are connected by a filter unit. The sensor fusion functionality is contained in this filter unit. The filter parameters as well as the parameters of input and output blocks can be configured via a configuration script or the graphical user interface.
The graphical user interface is detached from the main FusionHub application and both applications can therefore run on separate computers. This provides flexibility for running FusionHub on devices with limited monitoring capabilities like a head mounted display.
General
Starting FusionHub
FusionHub consists of two components:
The main application
A graphical user interface application
Insert the security dongle into a USB port of your computer.
The main FusionHub application is started by running FusionHub.exe
. No specific installation is needed, the application can be run directly out of its deployment directory. It is a command line application that uses the file config.json
for its configuration. We will explan the contents and options of the configuration file further below.
Please install the graphical user interface by running lp-fusionhub-dashboard_0.1.0_x64_en-US.msi
. It installs lp-fusionhub-dashboard
in your start menu, launch the application from there. Press the Connect
button after starting FusionHub.exe
to connect client and server. In case you are running FusionHub on a separate machine make sure to enter the correct IP address.
The screenshot below shows the connection elements of the GUI.
BASE Filter Configuration
FusionHub BASE combines data from an outside-in tracking system with inertial measurements via an IMU.
IMU-Optical Fusion Filter
Configuration Block
Node name: fusion
"fusion": { "type": "ImuOpticalFusion", "settings": { "echoFusedPose": false, "echoOpticalPose": true, "runIntercalibration": true, "Autocalibration": { "minAgeS": 60.0, "nSamplesForAutocalibration": 1500, "nSamplesForSteady": 256, "noiseRmsLimit": 0.02, "steadyThresholdAverage": 0.2, "steadyThresholdRms": 1.0 }, "MotionDetection": { "omegaLimit": 2.0, "positionSampleInterval": 1000, "rotationFilterAlpha": 0.9, "timeToUnknown": 500 }, "SensorFusion": { "alignment": { "w": 1.0, "x": 0.0, "y": 0.0, "z": 0.0 }, "orientationWeight": 0.005, "tiltCorrection": null, "yawWeight": 0.01 } } }
Parameter name | Description | Default |
---|---|---|
type | ImuOpticalFusion | |
echoFusedPose | false | |
echoOpticalPose | false | |
runIntercalibration | true | |
minAgeS | 60.0 | |
nSamplesForAutocalibration | 1500 | |
nSamplesForSteady | 256 | |
noiseRmsLimit | 0.02 | |
steadyThresholdAverage | 0.2 | |
steadyThresholdRms | 1.0 | |
omegaLimit | 2.0 | |
positionSampleInterval | 1000 | |
rotationFilterAlpha | 0.9 | |
timeToUnknown | 500 | |
alignment | 1, 0, 0, 0 | |
orientationWeight | Amount of correction of angle calculated from gyroscope data by optical measurements (roll, pitch, yaw) | 0.005 |
tiltCorrection | Specify for correcting tilt of angle calculated from gyroscope data by vertical calculated from gravity measurements. This feature is not available yet. | null |
yawWeight | Amount of yaw correction by optical data, if tilt correction is active | 0.01 |
This filter needs as input:
Optical tracking source
IMU source
This Filter outputs:
fusedPose
Output Data Format
{ "fusedPose": { "lastDataTime": { "timestamp": 0 }, "orientation": { "w": 1.0, "x": 0.0, "y": 0.0, "z": 0.0 }, "position": { "x": 0.0, "y": 0.0, "z": 0.0 }, "timestamp": { "timestamp": 0 } } }
Parameter name | Description | Unit |
---|---|---|
lastDataTime | Unused | s |
orientation | Orientation quaternion | without unit |
position | Unused | m |
timestamp | Time of data acqusition | ns |
Source Options
Optical Tracking Source Options
Advanced Realtime Tracking (ART)
FusionHub works with all ART tracking systems, based on their DTrack tracking software.
"type": "DTrack", "settings": { "port": 5005, "bodyID": 3, "endpoint": "inproc://optical_data_source_1" }
Optitrack
FusionHub works with all Optitrack tracking systems based on their Motive tracking software.
"type": "Optitrack", "settings": { "host": "localhost", "connectionType": "Multicast", "bodyID": 444 }
VICON
FusionHub consumes VICON’s DataStream protocol. Communication has been tested with their Shogun software.
"type": "Vicon", "settings": { "host": "localhost", "subject": "VCam" }
Antilatency
FusionHub connects directly to Antilatency’s USB or wireless trackers.
"type": "Antilatency", "settings": { "endpoint": "inproc://optical_data_source_1", "environmentLink": "AntilatencyAltEnvironmentHorizontalGrid~AgAEBLhTiT_cRqA-r45jvZqZmT4AAAAAAAAAAACamRk_AQQCAwICAgICAQICAAI", "placementLink": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" }
IMU Source
FusionHub supports all LP-RESEARCH IMUs.
See a description on how to prepare LPMS-IG1 for operation with FusionHub further below.
LPMS-IG1
"imu": { "type": "OpenZen", "settings": { "autodetectType": "ig1" } }
LPMS-CURS3
"imu": { "type": "OpenZen", "settings": { "autodetectType": "lpms" } }
Graphical User Interface
Dashboard
3D Viewer
Sensor Fusion Configuration and Calibration Status
General Settings
MOVE Filter Configuration
FusionHub MOVE adds an additional platform IMU to the BASE configuration. It combines data from both IMUs to calculate poses relative to a moving platform.
FLOW Filter Configuration
FusionHub FLOW combines odometry, GPS and IMU data from a vehicle to calculate high-accuracy and low-latency global localization information. The FLOW filter has two operation modes with different configuration blocks in config.json
and different output formats. The two modes are:
Low-dynamics filter (LD)
High-dynamics filter (HD)
The diagram below shows an overview of a simple FLOW filter setup.
Low-dynamics Filter (Odometry + GPS + (some) IMU)
Configuration Block
Node name: vehicularFusion
// Sensor fusion config "vehicularFusion": { "echoFusedPose": false, "endpoint": "tcp://*:8801", "fuser": { "fitModel": "SimpleCarModel", "driveModel": "Differential", "velError": 0.277777778, "omegaError": 0.5, "measurementError": 0.1, "smoothFit": true } }
Parameter name | Description | Default |
---|---|---|
echoFusedPose | fusedVehiclePose output is printed to command line | false |
endpoint | Output port for the fusion result | 8801 |
fitModel | Model to use for fusion. At the moment only | SimpleCarModel |
driveModel | Model to use to calculate car trajectory from CAN bus data. At the moment only | Differential |
velError | Velocity error for Kalman filter. Keep default value. | 0.277777778 |
omegaError | Omega error for Kalman filter. Keep default value. | 0.5 |
measurementError | Measurement error for Kalman filter. Keep default value. | 0.1 |
smoothFit | Enable this option to prevent filter output from jumping between odometry data and GPS measurement. Keep enabled. | true |
This filter needs as input:
LPMS-IG1P data source for IMU and GPS data
"imuP": { "type": "DualRtk", "settings": { "sensor1": { // If specification needed, insert first IG1 sensor name here //"name": "ig1p232800650050", "autodetectType": "ig1p" }, "rtcm": true, "imuEndpoint": "tcp://*:8802" } }
CAN bus and vehicle decoder source
"vehicle": { "type": "Automotive", "vehicleStateEndpoint": "tcp://*:8999", "settings": { "canInterface": "PeakCAN", "vehicleType": "R56" } }
This Filter outputs:
fusedVehiclePose
Output Data Format
{ "fusedVehiclePose": { "acceleration": { "x": 0.0, "y": 0.0, "z": 0.0 }, "globalPosition": { "x": 0.0, "y": 0.0 }, "lastDataTime": { "timestamp": 0 }, "position": { "x": 0, "y": 0 }, "timestamp": { "timestamp": 0 }, "utmZone": "31T", "yaw": 0 } }
Parameter name | Description | Unit |
---|---|---|
acceleration | 3D acceleration vector as measured by IMU. Describes the orientation of the vehicle. | m/s^2 |
globalPosition | Longitude and latitude in degrees | degrees |
lastDataTime | Ignore | s |
position | Position relative to starting point with X pointing North and Y pointing East in the current UTM frame | m |
timestamp | Timestamp of data acquisition | ns |
utmZone | UTM zone | UTM string |
yaw | Globally referenced yaw angle | rad |
Note: The FusedVehiclePose contains a 3D acceleration vector. The acceleration is defined in the following manner: There's a configuration flag imuToCarRotation which takes a quaternion used to rotate vectors in the IMU frame to the car frame. By default it is the identity quaternion. For the LD model, the measured IMU acceleration is simply rotated by the imuToCarRotation and written to the output.
In the LD filter, pitch and roll has to be derived from the acceleration data based on a model of the stiffness of the chassis. That assumes a flat surface. The HD model offers the full 6-DOF, and we are planning to unify them to have all data available at all times.
Example Configuration
Playback and fusion of prerecorded data: gpsImuFusionPlayback.json
Real-time fusion: gpsOdometryFusion.json
High-Dynamics Filter (IMU + GPS)
Node name: gnssImuFusion
Configuration block example (in sinks
section)
"gnssImuFusion": { "echoFusedPose": false, "endpoint": "tcp://*:8803", "fuser": { "fitModel": "ModelGnssImu", "accelError": 0.01, "omegaError": 0.02, "measurementError": 0.05, "imuToCarRotation": { "w": 1, "x": 0, "y": 0, "z": 0 } } }
Parameter name | Description | Default |
---|---|---|
echoFusedPose | fusedVehiclePose output is printed to command line | false |
endpoint | Output port for the fusion result | 8801 |
fitModel | Model to use for fusion. At the moment only | SimpleCarModel |
accelError | Model to use to calculate car trajectory from CAN bus data. At the moment only | Differential |
omegaError | Omega error for Kalman filter. Keep default value. | 0.5 |
measurementError | Measurement error for Kalman filter. Keep default value. | 0.1 |
imuToCarRotation | Orientation quaternion of IMU relative to car frame | 1, 0, 0, 0 |
This filter needs as input:
LPMS-IG1P data source for IMU and GPS data
"imuP": { "type": "DualRtk", "settings": { "sensor1": { // If specification needed, insert first IG1 sensor name here //"name": "ig1p232800650050", "autodetectType": "ig1p" }, "rtcm": true, "imuEndpoint": "tcp://*:8802" } }
CAN bus and vehicle decoder source
"vehicle": { "type": "Automotive", "vehicleStateEndpoint": "tcp://*:8999", "settings": { "canInterface": "PeakCAN", "vehicleType": "R56" } }
This Filter outputs:
fusedVehiclePose
fusedPose
Output data format
{ "fusedVehiclePose": { "acceleration": { "x": 0.0, "y": 0.0, "z": 0.0 }, "globalPosition": { "x": 0.0, "y": 0.0 }, "lastDataTime": { "timestamp": 0 }, "position": { "x": 0.0, "y": 0.0 }, "timestamp": { "timestamp": 0 }, "utmZone": "31T", "yaw": 0.0 } }
Parameter name | Description | Unit |
---|---|---|
acceleration | 3D acceleration vector as measured by IMU. Describes the orientation of the vehicle. | m/s^2 |
globalPosition | Longitude and latitude in degrees | degrees |
lastDataTime | Unused | s |
position | Position within UTM zone | m |
timestamp | Timestamp of data acquisition | ns |
utmZone | UTM zone | UTM string |
yaw | Globally referenced yaw angle | rad |
{ "fusedPose": { "lastDataTime": { "timestamp": 0 }, "orientation": { "w": 1.0, "x": 0.0, "y": 0.0, "z": 0.0 }, "position": { "x": 0.0, "y": 0.0, "z": 0.0 }, "timestamp": { "timestamp": 0 } } }
Parameter name | Description | Unit |
---|---|---|
lastDataTime | Unused | s |
orientation | Orientation quaternion | without unit |
position | Unused | m |
timestamp | Time of data acqusition | ns |
Example Configuration
Playback and fusion of prerecorded data: gpsImuFusionPlayback.json
Graphical User Interface
Map View
Communication with External Applications
Sending FusionHub Data to External Applications via the ZeroMQ Interface
FusionHub emits data resulting from the sensor fusion through the local network interface.
Output Ports
The network port that this information is output to can be configured in the JSON parameter file config.json
of FusionHub.
Data Format
As low level protocol to emit the output data we use ZeroMQ (publisher / subscriber). The data itself is in JSON format and is encoded as Protocol Buffers. Protocol Buffers are documented here. Message are defined in the Protobuf (.protoc) format as defined in the file stream_data.proto
. This file is contained in the installation folder of FusionHub.
Python Resources
Download a Python example that shows how to decode messaged from FusionHub from this repository.
Prerequisites can be installed in your Python 3 environment with this:
pip install zmq pip install protobuf
Make sure to set the input port in FusionHubPythonExample.py correctly. For example for the Antilatency source definition like below, the port needs to be set to 8899
.
"optical": { "type": "Antilatency", "settings": { // Use this for access from an external process eg. ALVR "endpoint": "tcp://*:8899", "environmentLink": "AntilatencyAltEnvironmentHorizontalGrid~AgAEBLhTiT_cRqA-r45jvZqZmT4AAAAAAAAAAACamRk_AQQCAwICAgICAQICAAI", "placementLink": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" } }
C# Resources
On parsing Protobuf files: https://github.com/5argon/protobuf-unity
How to subscribe to ZeroMQ messages: https://github.com/gench23/unity-zeromq-client and https://tech.uqido.com/2020/09/29/zeromq-in-unity/
VRPN Output
VRPN output is set in the following part in the sinks
section of config.json
. The device name will be referenced by the plugin for Unreal engine.
"VRPN": { "settings": { "deviceName": "Fusion Hub" } }
Please see below how we achieve data input via VRPN in the Unreal engine. First, install the VRPN LiveLink plugin:
Configure the VRPN source with the correct device and subject name:
Apply the output from the fusion hub to an Unreal object eg. a cine camera actor.
Hardware Preparation
General documentation for LPMS IMUs is here.
Switching LPMS-IG1(P) to USBxpress Mode
Note: These instructions work for LPMS-IG1 (IMU only) and LPMS-IG1P (IMU + GPS).
First, download LpmsControl 2 from here and install it.
Connect LPMS-IG1(P) to your computer and start LpmsControl 2.
In LpmsControl 2 select one of the LPMS-IG1(P) sensors and connect to it.
In case the sensor is in VCP (virtual COM port) mode as shown below, click on Convert
to switch the sensor to USBxpress mode. This is required for communication with FusionHub.
After converting the sensor to USBxpress mode it should be displayed as such.
The image below shows typical output from LPMS-IG1(P) after connecting.
Close LpmsControl 2 to disconnect from the sensor. You are now ready to use LPMS-IG1(P) in FusionHub.
Release Notes
Version 1.2
Release date: 2023/1/5
GUI as standalone application
Support for LPMS-CURS3 and other series 3 sensors as input source (BASE and MOVE)
Added GPS-IMU filter (FLOW)
More example configurations
Added sample data for vehicle localization
Various bug fixes and smaller modifications
Version 1.1
Release date: 2022/11/21
New graphical user interface
Added GPS-odometry fusion for automobile localization
Version 1.0
Release date: 2022/8/25
First full release
Added IMU-optical fusion